

Pasture Soil Health Management

Kaitlin Farbotnik, NRCS Northeast Regional Soil Health Specialist (Acting) Catskills Regional Agricultural Conference January 12, 2022 Natural Resources Conservation Service

Second Grazing and Soil Health Principles

What are we Talking About??

Complete Utilization of Crops

https://pastureproject.org/publications/grazing-continuum-diagram/

Strategies

Types of Grazing Systems () () () ()

1. Continuous Grazing

- Single or few large pastures
- Very little rest

2. Rotational Grazing

- Multiple pastures in a set rotation are used
- More permanent pastures, moved based on days.
- Intermediate length rest periods

Natural Resources Conservation Service

Types of Grazing Systems 🛆 🛆 🛆 🖉

3. Strip Grazing

- Shorter rotations
- Smaller pastures
- Mainly using temporary fences

4. Mob Grazing

- Very high density
- Very long rest periods
- High amounts of trampling and nutrient deposition

Natural Resources Conservation Service

nrcs.usda.gov/

Bottom photo: https://www.beefmagazine.com/pasturerange/ranchers-sing-praises-mob-grazing-cattle Top photo: Tom Chapman

Types of Grazing Systems () () () ()

5. Creep Grazing

- Higher need animals are given access to forward pastures
- Facilitated by gates or elevated fence posts
- Low-stress and gradual weaning

6. Forward Grazing

- Different grazing groups
- Higher need animals graze first and followed with lower need animals

Nutrient Distribution of Managed 0.00 Grazing

Evenly distribute manure across a pasture

75-90% of nutrients from manure are redistributed in the pasture. Even distribution = even grazing.

Number of Paddocks	Rotation Frequency	Years to get 1 pile/sq. yard			
1	Continuous	27			
3	14-day	8			
12	4-day	4-5			
24	2-day	2 itur			

Conservation Service

Source: Lory, J. and R. Kallenbach. 2002. Managing nutrients in a grazing system. Univ. of Missouri

Bale Grazing

46R ICULTURAL COMMUNIC LAND.

Natural **Resources** Conservation **Service**

Photo: http://www.angusbeefbulletin.com/extra/2017/05may17/0517mg_balegraze.html#.YdW1OmjMKM8

Proper Utilization

WHY DOES THE UTILIZATION RATE UNIT WHEN THE LENGTH OF OCCUPATION INCREASES?

TABLE 5: UTILIZATION RATE BASED ON LENGTH OF OCCUPATION					
Length of Occupation (days)	Utilization Rate (%)				
1 or less	80				
2 – 3	75				
4	70				
5	65				
6	60				
7	50				
14	40				
Continuous – low stocking density	35				
Continuous – high stocking density (overgrazed)	90				

Natural Resources Conservation Service

Root Response to Grazing 🖉 🖉 🖉 🖉

Adapted from NRCS, Bozeman, MT

Natural Resources Conservation Service

nrcs.usda.gov/

Left Photo Source: OnPasture.com

Right Photo Source: Crider, F. J., 1955, Root Growth Stoppage, Technical Bulletin No. 1102, USDASCS, Government Printing Office, Washington D.C. Graphic adapted by A. Miller, Black Dog Graphics, from Grass: The Stockman's Crop by H. E. Deitz.

Balancing Forage Quantity and Quality 🖉 🌙 🄇

Natural Resources Conservation Service

Interactions Between Grazers, Forages, and Micro/Macro Organisms

Pressures Created by Different Stressors

Stressor	Pressure (Psi)
Sheep	12
Human	14
Utility terrain vehicle	14
50-ton bulldozer	16
Cattle	27
Walking Cattle	48
Horse	27
Walking Horse	48
Tractor	175

Studies done in sandy loam soils showed an increased bulk density by 8% when heavily grazed

Natural Resources Conservation Service

Herbivory Response of Plants 🖉 🖉 🖉

Plants have a response to herbivore saliva!

Natural Resources Conservation Service

Photo: https://www.agriculture.com/livestock/cattle/getpastures-off-to-a-good-start-for-adequate-feed-allyear

Dung Beetles and Soil Health

Dung beetles do a lot more than eating dung. They recycle nutrients by breaking the dung up, improving soil quality.

Dung beetles protect cattle from pests such as hornflies, by removing the dung that hosts these pests.

- Recycle nutrients by breaking up manure into smaller more reactive pieces
- Can bring organic matter down 18" below the surface
- Reduces the amount of refuse areas within a pasture

Dung beetles evolved millions of years ago when truly enormous creatures roamed the earth!

Dung beetles derive all their nutrition & moisture from dung, and don't need to drink!

Cartoons: www.greenhumor.com

Breakdown of a dung pat

And the second states of the second

some the statements of the statements

Active: spring-autumn. ACTUAL SIZE Geotrupes spiniper iturneller) Place of origin: France Active: late spring-autumn.

Onthophagus binodis (tunneller) Place of origin: South Africa. Active: late spring-autumn.

r) Econiticellus fu/sus (tunneller) Place of origin: Mediterranean. Active: spring to autumn.

praphic 1994 1994

Benefits of Dung Beetles 0 0 0 0 0 0 0

Credit: Oklahoma Forage and Pasture Fertility Guide

Natural Resources Conservation Service

 \mathbf{O}

Promoting Dung Beetles

- High intensity grazing
- Parasite management longer rest periods

Chemical	Common Names	Likelihood of Beetle Toxicity
Abamectin	Avomec, Cattlegard, Duotin, Genesis, Paramectin, Virbamec, Endomec	High
Doramectin	Dectomax	High
Eprinomectin	Eprinex, Longrange, Broadline	High
Ivermectin	Baymec, Bomectin, Cevomec, Ecomectin, Genesis, Ivomec, Noromectin, Virbac	High
Moxidectin	Cydectin	Unlikely

Natural Resources Conservation Service

Source: Consider Your Dung Beetles when Using Parasiticides (<u>http://www.dungbeetle.com.au/considerbeetles.pdf</u>), parastipedia.net, and Dr. Shaun Forgie (https://dungbeetles.co.nz/establishing-dung-beetles-and-using-chemicals-forinternal-external-control-of-livestock-pests/)

Senefits of Maximizing Biodiversity

Diversity throughout agriculture is a good thing

Grazing systems that only utilize one species, such as cattle, leave additional grazing opportunities on the table.

NDSU Dickinson Research Extension Center

Resources Conservation Service

Benefits of Multi-Species Grazers

Plant	Horse	Cattle	Sheep	Goat	
Grass	90	70	60	20	
Weed	4	20	30	20	
Browse	6	10	10	60	

Grazing Preferences by Species: Horse grass Cattle grass > legumes Sheeplegumes > forbs = grass Goatforbs > grass > legumes Deer..... forbs > grass

Natural Resources Conservation Service

Benefits of Multi-Species Forages 0 0 (

Natural Resources Conservation Service

nrcs.usda.gov/

Different forage species and their relative root depth and structure.

Diversity in Growing Seasons

Natural Resources Conservation Service

University of Vermont

Solution Tools and Techniques for Improving Soil Health

Mitigating Grazing Impacts

CONTINGENCY PLAN

Only graze if you have, understand and are willing and able to follow a contingency plan

Natural Resources Conservation Service

Helpful interpretations

- Capability and capability subclass
- Organic matter depletion
- Susceptibility to compaction
- Vegetative productivity?
- Depth to water table
- Ponding/flooding frequency

* The accuracy of the Web Soil Survey relies on the soil mapping

Natural Resources Conservation Service

Monitoring Tools - Animals

Monitoring Tools - Plants 🔌 🔌 🖉 🎸

USDA United States Department of Agriculture

Natural Resources Conservation Service Guide to Pasture Condition Scoring

Introduction

Grazing Basics Goals and Resource Assessment Writing the Grazing Pla Grazing Syste Operation... Monitoring. Next Steps. References... Further Resources ... Appendices: Grazing Plan Checklist ... Grazier's Math

Clip-and-Weigh Aeasuremen irazing Plan emplate. Checklist

program of the Nation

www.attra.ncat.org

USDA is an equal opportunity

some good, online tools for recordkeeping and monitoring.

January 2020

manual provides all the resources you need to write your own NCAT Program Specialist adjust your management throughout the grazing season. Periodically reviewing Published August 2017 will help you assess how well you are working toward your goals, and will suggest next season. The manual starts with a discussion of grazing principles and how to assessment, followed by a step-by-step process for writing a grazing plan. A temp are provided. This manual covers the importance of developing a simple pasture-m

to animal demand....

Introduction

lanning is the first step in any successful CAT). The program is funder farm enterprise. The benefits that accrue to graziers from having a grazing plan include ative Service. Visit the greater forecasting ability for grazing decisionuncational making, extension of the grazing season, more con-NCAT from pasture, and increased pasture sustainability. ness of the grazing plan.

applying observation to ma some more, adjusting as r ing your plan in a simple, easy-to-access format There are five steps in developing a grazing plan: (1) set goals; (2) inventory resources; (3) match available forage to animal needs; (4) develop a sistent supply of forage, greater dry-matter intake grazing schedule; and (5) monitor the effective-

Natural **Resources** Conservation Service

Monitoring Tools - Soil 🛆 🛆 🛆 🖉 🎸

			Cornell Soil Health Assessment				
United States Department of Agriculture			Corey 123 Ho New Io	Com orizon Rd owa, NY, 13026		Sample ID: Field/Treatmen Tillage:	S_1 t: West Upper 7-9 inches
Cropland In-Field So	il He	alth Assessment Worksheet	Agricu	litural Service Provider:		Crops Crown:	COG, COG, COG 5/1/2015
Soil Health Resource Concerns	In Ar Pr	PENNSTATE Doe, John Given Soil Texture: Sith John@doe.com Coordinates: 42.4				e: Lima ture: Silt Loam 42.44790 °N; 76.47570 °W	
SOM = Soil Organic Matter Depletion	So	SOIL TEST REPORT FOR: ADDITIONAL Measured Soil Textural Class: Silt Loam Sand: 37% Silt: 53% Clay:				: 37% Silt: 53% Clay: 10%	
AGG = Aggregate Instability HAB = Soil Organism Habitat Loss or Degradation	• Re	Test Results					
Location	Su	DATE LAB # SERIAL # COUNTY ACRES ASCS ID 04/13/2016 \$16-19262 48309 Bucks	2	Indicator	Value	Rating	Constraint 5
Field/CMU	Po	SOIL NUTRIENT LEVELS Below Optimum Optimum		Available Water Capacity	0.15	42	
-	Pe	¹ Soil pH 7.0 ² Phosphorus (P) 57 ppm	E	Surface Hardness	87	84	
Tract#	:	Potassium (K) 161 ppm Magnesium (Mg) 234 ppm	hysi	Subsurface Hardness	290	50	
Client/Customer	w	RECOMMENDATIONS: (See back messages for important information) Limestone*- NONE Magnesium	-			50	Aeration, Infiltration, Rooting, Crusting,
Planner	1	*Celcium Carbonate equivalent		Aggregate Stability	22.0	22	Sealing, Erosion, Runoff
	So	Plant Nutrients: (If manure will be applied, adjust these recommendations as Year: Cron Expected Nitrogen Phosphate		Organic Matter	2.9	32	
Date	So	Yield (Ib N/A) (Ib P ₂ O ₀ /A) 1 Established Pasture (without legume) 3 T/A 150 0	5	ACE Soil Protein Index	4.5	26	Organic Matter Quality, Organic N Storage, N Mineralization
Soil Map Units	Pli	For optimum efficiency, the recommended N should be split and applied between gazzin forsage growth in the positure. As an example apply 12 is 10/2 of the N in the spring, 1/4 i early full. Recommended P and K can be applied between grazings any time after the fit	Biolo	Respiration	0.39	23	Soil Microbial Abundance and Activity
Soil Moisture	:			Active Carbon	450	27	Energy Source for Soil Biota
Topsoil Texture	Bie	2 Established Pasture (without legume) 3 T/A 150 0 For optimum efficiency, the recommended N should be split and applied between grazing		рН	6.9	100	
	Bie	forage growth in the pistrare. As an example apply 1/3 to 1/2 of the N in the spring, 1/4 i early fall. Recommended P and K can be applied between grazings any time after the fire	nical	Phosphorus	4.5	100	
Natural Resources Conservation Service			Cher	Potassium	67.8	93	
		Stabilished Pasture (without legume) 3 T/A 150 0 For optimum efficiency, the recommended N should be split and applied between grazing Minor Elements Mg 419 Fe 1.1 Mm 12.9 Zm 1/		1.9	100		
	early fall. Recommended P and K can be applied between grazings any time after the fin		re	58	Medium		
ADDITIONAL RESULTS: Optional Tests: Calcium 24ddits 4CEC 195 Saturation of the CEC Organic Nitrate N 5					Background info, (2) Measured indicator,		

Matter

96

ppm

ion of Cati

Mg I Ca

K I

3.1 14.6 82.3

(ppm)

2197

(meq/100 g)

0.0

(meq/100 g)

13.3

Test Methods: '1:1 soil:water pH, 'Mehlich 3 (ICP), 'Mehlich Buffer pH, 'Summat

Natural Resources Conservation Service

nrcs.usda.gov/

(3) Indicator value, (4) Rating, (5) Constraints, and (6) Overall quality score.

1 ×× 1 ×× 1 ××

there

Know where you are, where you want to be, and how you're going to get

QUESTIONS??

Kaitlin Farbotnik

Northeast Regional Soil Health Specialist (Acting) E-mail: Kaitlin.farbotnik@usda.gov Phone: 732-519-1195

USDA is an equal opportunity provider, employer, and lender.

Natural Resources Conservation Service